
I•

AD-A250 344 ENTATION PAGE Foan roved

fo r Intuckml. s"rda ng eod lrn ai , ros g a' W. Wend rqaon u ki g~lg Uh badms e~hnte or dwro mped 01 i co€ , 01 Woi'inia ~
bfi hor Ifli flm w RepoeW. 1215 Jsffursn DIxe Ngt-/wa. Sol 1204,/A'lrMg1on. VA 22a a,,d to

•, ... ... ..... ,... id Sudget Wi~igto . DC 20b03.

1. AGENCY USE ONLY (Luaw Blan) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1989 Unknown
4. TfTLE AND SUBTITLE S. FUNDING NUMBERS

Against Conditional Probability gft DAAB10-86-C-0567

.AUTHOR(S) L) t

Henry E. Kyburg, Jr. A1 5 . .

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION~REPORT NUMBER

University of 
Rochester

Department of Philosophy
Rochester, NY 14627

9. SPONSORING/MONITORING AGENCY NAME(S) ANDADORESS(ES) 10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

U.S. Army CECOM Signals Warfare Directorate
Vint Hill Farms Station
Warrenton, VA 22186-5100

92-TRF-0033

1. SUPPLEMENTARY NOTES

12& DISTRIBUTIONAVAILABILTY STATEMENT 12b. DISTR18UTION CODE

Statement A; Appt.pved for public release; distribution
unlimited.

13. ABSTRACT (Maximum 200 words)

While a minority of statisticians hew to the Bayesian lin , a large number of
philosophers and a large number'of AI researchers take Bayesian conditionalization for
granted as the only way of updating uncertainties. At the same time, everybody,
Bayesian or not, appears to accept the fundamental principle of direct inference: if
you know the statistics, the statistics should constrain your belief. The contribution
of this paper is to exhibit a conflict between these two principles, and to argue in
favor of direct inference and against conditionalization.

1. SUBLECT TERMS is. NUMBER OF PAGES
15

Conditional Probabiltiy, Artificial Intelligence, Data Fusion 16. PRICECODE

Uncertain Inference, Inverse Probabiltiy
17. SECURITY CLASSIFICATION I 18. SECURITY CLASSIFICATION I 19. SECURITY CLASSIFCAI ION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE I OFABSTRACT U

UNCLASSIFIED UNCLASSIFIED I UNCLASSIFIED UL
I , 7540 01-280-5500 1. OO Vic I ! 2 11 )



AGAINST CONDITIONAL PROBABILITY

by

Henry E Kyburg, Jr

Department of Philosophy

University of Rochester

Rochester N Y 14627

kyburgorochester arpa

Automated Reasoning

.ncer . :nty, Evidential Updating

While a minority of statisticians hew to the Bayesian line, a large

number of philosophers and a large number of Al researchers

take Bayesian conditionalization for granted as the only way of

updating uncertainties. At the same time, -verybcdy, Bayesian

or not, appears to accept the fundamental principle of dir ect

inference. if you know the statistics, the statistics should

constrain your belief. The contribution of this paper is to exhibit

a conflict between these two principles, and to argue in favor of

direct inference and against conditional.zation. 92-12896

92 5 l i1U



Against Conditional Probability

1 Background.

If there is any distinction in the realm of statistics or

inductive logic or the manipulation of uncertainty that deserves

to be called "classical", it is the distinction between direct and

inverse inference

Direct inference includes among its premises some

statement of statistical distribution, or relative frequency, or

chance, and concludes with a statement of probability concerning

a sample or a single case. From 50% of coin-tosses yield heads,

in the absence of countervailing arguments, we conclude that the

probability is 0 5 that the next toss will yield heads.

Inverse inference takes as its premises a stater.ent of

sample statistics concerning a sample from a populatio. together

"with some other premises, and concludes with a statement of

statistical distribution, or relative frequency, or chance,

applicable to the population as a whole

Both direct and inverse inference are character-zed by

nonmonotonicity. Adding to the premises may undermine a

conclusion in either case This was recognized explicitly by R. A

Fisher [1936, p 254]. "There is one peculiarity of uncertain

inference which often presents a difficulty to mathematicians

trained only in the technique of rigorous deductive argument,



namely that our conciusions are arbitrary, and there.tore invalid,

unless all the data, exhaustlveiy, are taken into account 1rn

rigorous deductive reasoning we may make any selection frorr

the data, and any certain conclusions which may be deduced

from this selection will be valid, whatever addit-onal data we

have at our disposal " Even so, direct inference has been

regarded as relatively unproblematic.

Given as a premise that the chance of heads on the toss

of a coin is a half, we confidently say that the probability of

heads on the first toss is a half Given a further premise to the

effect that three of the first four tosses yielded heads, we

recompute the probability of heads on the first toss to be 3/4

2. Bayes' Theorem

Inverse .nference has cften been assoc:ae- *with Saves

theorerm, For example, one way of getting at the parrmeter n

characterizing the proportion of black balls in an urn is to draw

a sample, and to apply Bayes' theorem Bayes' theorem,

however, requires as input a prior distrutzon for the parameter

p , which may be difficult to justify in terms of frequencies or n For-

chances. Thus Jerzy Neyman, another founding father of A&I 20-"
0

modern statistics, writes [Neyman, 1957 p. 7] " persons who -0d 0
it ion

would like to deal only with classical probabilities, having their

counterparts in the really observable frequencies, are forced to oL...
..-ltty Codes
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look for a solution of the problem of estimation other than by

means of the theorem of Bayes " This :s not to say that Ba' s'

theorem is never applicable As R A Fisher saw clearly, there

are many situations in which Bayes' theorem can easily be

construed in terms of direct inference In (Fisher, [1930) he

notes that drawing from a super-population in which the

parameter of interest (say p ) has a known distribution, and

then getting a posterior distrbutcn for p .s a perfectly

direct argument. For inverse inference proper -- that is,

inference whose uncertainty is not based on known frequencies,

but on subjective probabilities -- Fisher has nothing but

contempt [1930] "In fact, the argument runs somewhat as

follows: a number of useful but uncertain judgments can be

expressed with exactitude in terms of -^robabi t, our jdgmentS

respectr.g causes or hypotheses are urcer-tal., therefz-r our

rational attitude towards them is expressible in terms of

probability Neyman's attitude is even less tolerant

Fisher and Neyman were reacting against the use of the

so-called axibm of BaYes that stipulated the use of uniform

priors. Their goal, which has informed most of modern

statistical practise, was to do without priors Since their day,

however, inverse inference proper has become (almcst)

respectable again This is particularly so in philosophy, in which

inductive inference is often supposed to take place only by means
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of Bayes' theorem, and in Al, in which the updating or

modification of uncertainty is assumed to take place Drily bv

means of conditionalization 1 claim that there is a serious

conflict between direct inference and inverse inference proper --

that is, the use of conditionahzation. Since the original point of

inverse inference was to serve the interest of direct inference by
providing statistical premises, we should hold onto direct inference

and abandon conditionalization except in those cases (which are

many) in which it can be reduced to direct inference.

3. Direct Inference

Direct inference has always seemed sc obvious, that

amost nobody has made a serious attempt to reduce it to rules

,P.eichenbach [1949] is an excepticn, my contrating view

appeared in ;19613 ) Two simple rules will suffie for cur

purposes here, they are the difference rule and the strength

rule Essentially, they are rules for choosing a reference class

We will generalize the notion of probability very slightly

to accomodate the obvious fact that. we don't know most general

frequencies or distributions exactly, we will therefore represent

both probabilities and our knowledge of frequencies by intervals,

We will say that two intervals differ if they are not identical and

neither is included in the other If one is included in the other

we will say that it is stronger than the other.



The .renc rule says that if you have ,wc ,ossib<

reference .classes, and they are characterized by .different

frequency intervals, then, if one reference clas :in

other, it may be the right reference class, but if neither is

included in the other we may have to look elsewhere for a

reference class Thus if you know of a card that t is black, the

probability that it !s a spade is determined by the frequency of

spades among black cards, not among cards in general

The strength rule says that if you have two possible

reference classes, and neither is ruled out as a reference class by

differing from some other reference class, then the one about

which our statistical knowledge is stronger Is the better reference

class As an extreme example, I know that th: -;-.u o f

heads in the set -f .:sses c-nsistilng of t.e smnlez n -f the n-..t
toss is Mn the closed interval L0, I. and that's all I ,kow +bout

r kowtha aong,0, and tht' I,

it But know that among coin-tosses -n general, heads occur

with a frequency very close to a half it .s the latter that

constitutes a better reference class

This characterization of direct inference 'av1es out a

number of important aspects, but they are not essenta! for our

purposes here. Details can be found in [1983]

Here is an example in which the conflict between direct



inference and conditionalizatorn cores out clearly

Suppose that we are running a faotzry, and we se a

certain type of instrument to test our product The

manufacturer of the instruments certifies on the basis of
extensive testing, that his instru ments are subject to error

greater than e exactly 20% of the time. Of course we

understand "exactly 20%" to mean very close to 20%. We have

no reason to doubt this report.

Pick an item off the assembly line Test it with the

instrument The probabilty that the true value is within e of the

reading is clearly 20 This is just direct inference, making use

of the fact that we know the frequency of errcrs of magnitude e.

Now let us suppose that we seem to notice that some

instruments are more accurate than others f course that Is

bound to be the case, and dces not impugn the rm-anufacturer's

claim that the error rate is 20%. We are inspired to look into

the matter more deeply we note that the instruments are

inspected by three different inspectors, A, B, and C We form

the hypothesis that the accuracy of the Instrument is related to

the identity of the inspector who passed it We take a sample of

400 each of readings made on each kind of instrument, and

compare the readings made by our super-accurate-tester

The number of readings in error by more than e, and

the ratio of such readings to the total number, is presented in



the following table

iypke- trials er1'rrS -t

A 400 10 8 n2ln

400 32 10

4070 175C

We may also comnpute ratios M broader classes fromn the samne

data

AU B 800 1,-, 20

AU C 800 178 22

SU C 800 12212

A)B U C 120C)0 230n 1917

What do we do with this5 data') Well, we can use

-direct inference to draw conclusions about the general classses of

measurements A, B, and C, and their combtna-ocrS Tak-ing 95

as an acceptance level, we note tha htcrrc-

stadar dev :at-.c0n s --n -?-h e n o rrr al :stu:n + h :resent

zase we ca. disregard the difference b'etw,,een thne b'nriand

the normal distribution. The mean of the difference between the

sample mean -and the population mean .s 0 We thus get the

following confidence inter-vals for th-e er:ror raen the clast-ses

tested
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Lypa number standard inter','il

deviation
400 040 [ 230, 310"

B 400 040 [ 090, 170

C 400 1040 [135, 1
AUB 800 .028 [ 172, 228]

AUC 800 .028 [ 194,251]

BUC 800 .028 [ 124, .181]

AUBJC 1200 023 [169, 215]

Assume that the sampling procedures leave nothing to be desired.

Note that our results do not impugn the manuacturer's claim

that the relative frequency of errors is 20 At the same time,

when we now prck an item from the asse.m'by Ine ard a

it, if we notice that we have an instrument ot , A-...,-e....

suppose that the probability is [ 23, 31. that the reading ., in

error by more than e Similarly, if we use an instrurnent of

type B, we find the probability of this amount ot error to be

only [.09, 17]

On the other hand, if we are looking over old records,

and the inspector of the instrument with which a measurement

was made was not recorded, it seems right to use the old

probability of error of .20. Someone might want to argue that

since we have this new information about AUBUC -- namely,



that the frequency of error is between 169 and 215 -- we

should use that interval But why ' That doesn't srwwt

the manufacturer's error frequency, and no doubt his frequency-,,

is, based on vastly more information than ,S o)UrS It zee.-s- tC.b

just a waste of good intormrat-con to use our ro-ugh etimate ir.

place of his refined one. At any rate, this is the intuition on

which the strength rule is based

If these are our intuitions, 'We mulst reject

conditionalization in this case. Take the probabilities we get from

direct Inference to constrain our degrees of behl; 'et our -degree=,

of belief be given by a belief function BF sat-sfy~ng -he axion-c of

probability. Then by conditizonal iza tion and the pr.-nc.,ple of total

probability we have

BF(EIAU BuiC) = BF(EJAU B)BF(AUB) ---BF(Ej1C)BF(C)

Since the probability of E given AU B is 200, hb'7 the strength

rlan - he samne iS tr-ue of the :r'bbht f 7 ie A -C

anci sin~ce th-e probability of EIC is~~i1C this-t dent.ty :~an Zni%7

be satisfied if BF(C) Is 0. Again, by condftionalizat:c'n and the

principle -of total probability we have

BF(E'Au BuC) =BF(E!AuC)BF(AUC) + BF(EE)BF(B)

so that, by the same argumnent, we havt.e SF(B) = C)

From this it follows that BF(A) = 1, since BF(P)-

BF(C) 0. So we have BF(EAUBUC) = BF(EIA) -E f 270, 3103,

contrary to our assumption that BF was to be c-onsrtrained by our



probability intervals

We must give up something The -rn-:l,of total

probability is hard to give up every frequency funct....n that

app,.es to: he world satisfies the pri..:p f total prcb.ab-hty

Buit condtionalization, applied to a effunctc..... r.O

our beliefs are supposed to change in response to inccming

evidence And there is nothing sa-r . .anct abcut thai -ff course

conditionalizatlon will apply sometimes It we knew what

proportion of the measurements were given by each of the three

types of instruments (.so what we had probabil, " ec - to

base -F(A), BF(B), and BF(C)) then -f course we %would not

apply the strength rule, but rather an appropriate weighted

average in obtaining BF(EIAQ BQjC) And this could (and should)

be based on a direct inference

s.e way,: -ea-ng n*n --

section :s to insist that once we have teated a ..r..... of t

measurernents made in our factory, wre should use th+se statistics

for our probabilities And thus, for example, to use i 6, 251

rather than 200 for BF\,EtIAUBUC) This won't d f two

reasons Suppose we had tested the three types sf instruments

and not found any evidence that the expected frequency of errors

differed Surely in that case we would feel free t.o oontinue using



the manufacturer's error rate of 200 Furthermore, we always

have very specific statistical information concerninm the errz-r

rate in future measurements Thus I know that the err:r rate

among future measurements made by me using ,nstrurnen-ts

type A is 'in the interval [0,11 Ard this is probably a1 I .know

about that class of measurements Surely I should not be

required to take the probability of error to be [L, -]

The response of the subjectivist to this sort. of example

is two-fold First the subjectivist will assert that probabilities

are belief functions, and that therefore intervals won't do Given

any measurement performed with an instrument in AuBuC,

BF(A), BF(B), and BF(C) -- the degree of belief that it was

performed with an instrument of type A, B, or C, respectively

-- are all real valued and add up to I Similarly, the

conditional probability BF(EIA) is real valued by the preceding

Knd of argumrnent HEA = ?E A 2 - F EA2K"'A,

wnere A, corditior that an intrument -of type 'A S used

,ind the error rate of instruments of type A is in the i'th

subinterval of ' 230, 310] Naturally, we can make these

subintervals as small as we want So the subjectivist thinks 1

can do things that I don't think I can do, like making all

probabilities precise

On the other hand, the subjectivist can offer an

,ndependent argument for condit,,cnaization Since I have



accepted total probability, if I can be compelled to accept

conditionalization as well, ! shall find myself having to reject

direct inference -- or at least the strength rule The argurment

,oes like the standard dutch book argurnents for the probabiti

axIoms Roughly it is this if you allow conditional bets, but do

not adjust your beliefs in accordance with the principle of

conditionalization, then your unfriendly bettor will! bet on X at

your odds, on X & Y at your odds, and w4ll make a carclt,,cna!

bet on X, conditional on the occurrence of at those odds you
will offer once you have observed Y If you do not obey the

principle of conditionahization, these need nct be the same odds,

and the unfriendly better will be able to win for sure Thus, it

is claimed, the principle of conditionalization has the same degree

of soundness as any other principle of probabilIt-

To this I respond that dutch book arguments are not

very persuasive anfwa,7. It is a matter of deduct:ve

SeU-preservaA.on -- and has nothing to do with degrees of belief

-- not to make a set of bets on which you are bound to lose

money But it is also not always appropriate to lock at

conditional bets In the example of the instrument, the numbers

to which I am led seem perfectly reasonable, even though they

are not consistent with any probabilistic belief function whose

range includes prior beliefs about which instrument is used

Finally, as one can see from this kind of example, the
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subjectivist requires that the value of the belief function be

determined for all possible future contingencies -- anj then never

changed (Conditionalization does not invc!ve a change of the
z.aic belief unct.ion D< = E & A),'A) fcr e:.re, sc

that while one's initial absolute belief funot::n :.s updated, one .s

never allowed to change one's mind )

in terms of the book-makng metaphor, the -cokie

must post odds on all possible contingencies, and then take those

odds to determinfall his conditional bets; whatever happens,

whatever new evidence there is, the bookie need merely look up

the corresponding conditional odds in his -nMtial table He cannot

change his odds. I suggest that this is overly rigid. One should,

perhaps rarely, be willing to change ones odds in a fundamental

way. Learning only by conditionalization implieE arn excessively

narrow view of learning Where there is conflict with direct

inference, direct inference should prev~i!, and cni-ticnalizati n

srculd g, hang



note
1 This example is due essentially to Levi [1977, ar7 d

[1980], where it is alleged to show the mcoherer.ce of the

strength rule I have profited also from extensive discussions

with Levi on these matters
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